Пример: Транспортная логистика
Я ищу:
На главную  |  Добавить в избранное  

Химия /

Пропилен

←предыдущая  следующая→
1 2 



Скачать реферат


Оглавление

Физические свойства 2

Химические свойства 2

Получение пропилена 4

Получение пропилена в лаборатории 4

Получение пропилена в промышенности 5

Применение: 6

Список литературы 9

Пропилен (пропен) Н3С—СН==СН2 относится к углеводородам ряда этилена (алкены или олефины).

Алкены, или олефины (от лат. olefiant - масло — старое название, но широко используемое в химической литературе. Поводом к такому названию послужил хлористый этилен, полученный в XVIII столетии, — жидкое маслянист вещество.) — алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь.

Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными.

Алкены образуют гомологический ряд с общей формулой CnH2n.

Непредельный (алкеновый) радикал называют тривиальным названием или по систематической номенклатуре: Н2С==CН—СН2 - аллил (пропенил-2)

Пропилен служит сырьем для получения изопропилбензола, ацетона, фенола, полипропилена, глицерина, изопропилового спирта, синтетического каучука и других ценных органических продуктов.

Физические свойства

Пропилен представляет из себя газообразное вещество с низкой температурой кипения t кип=-47,7 °С и температурой плавления t пл= -187,6 °С, оптическая плотность d204=0,5193.

Химические свойства

Пропен обладает значительной реакционной способностью. Его химические свойства определяются, главным образом, двойной углерод-углеродной связью. p-связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента.Все реакции присоединения протекают по двойной связи и состоят в расщеплении -связи алкена и образовании на месте разрыва двух новых -связей.

Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.

Присоединение галогенов (галогенирование):

Реакцию галогенирования обычно проводят в растворителе при обычной температуре.

Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных. Легче идет присоединение хлора и брома, труднее — иода. Фтор взаимодействует со взрывом.

Присоединение водорода (реакция гидрирования):

Присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), пропен переходит в предельный углеводород — пропан.

Присоединение воды (реакция гидратации):

Присоединение галогеноводородов (HHal) и воды происходит по правилу В.В.Марковникова (1869). Водород кислоты Hhal присоединяется к наиболее гидрированному атому углерода при двойной связи. Соответственно остаток Hal связывается с атомом С, при котором находится меньшее число атомов водорода.

Горение на воздухе.

При поджигании горит на воздухе:

2СН2=СНСН3 + 9О2 6СО2 + 6Н2О.

С кислородом воздуха газообразные пропилен образует взрывчатые смеси.

Пропилен окисляется перманганатом калия в водной среде, что сопровождается обесцвечиванием раствора KMnO4 и образованием гликолей (соединений с двумя гидроксильными группами при соседних атомах С).

Окисление кислородом воздуха в пропиленоксид при нагревании в присутствии серебряных катализаторов:

Полимеризация– связывание множества молекул пропилена друг с другом. Условия реакции: нагревание, присутствие катализаторов. Соединение молекул происходит путем расщепления внутримолекулярных -cвязей и образования новых межмолекулярных -cвязей:

Получение пропилена

Получение пропилена в лаборатории

Из лабораторных способов получения пропилена можно отметить следующие:

1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:

H2C—CH2 – CH3 = H2C==CH2– CH3 + KCl + H2O

| |

Cl H

K—ОH

2. Гидрирование пропина в присутствии катализатора (Pd):

H—C≡C— CH3 + H2 = H2C==CH— CH3

3. Дегидратация пропилового спирта (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или А12O3:

Н2С—СН2 — CH3 = Н2С==СН — CH3 + Н2О

| |

H -OH

4. Отщепление двух атомов галогена от дигалогеноалканов, содержащих галогены при соседних атомах С. Реакция протекает под действием металлов (Zn и др.):

Получение пропилена в промышенности

В природе алкены встречаются редко. Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти в кипящем слое (процесс фирмы BASF), пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля. Существует несколько видов пиролиза пропилена: пиролиз в трубчатых печах, пиролиз в реакторе с кварцевым теплоносителем (процесс фирмы Phillips Petroleum Co.), пиролиз в реакторе с коксовым теплоносителем (процесс фирмы Farbewerke Hoechst), пиролиз в реакторе с песком в качестве теплоносителя (процесс фирмы Lurgi), пиролиз в трубчатой печи (процесс фирмы Kellogg), процесс Лавровского — Бродского, автотермический пиролиз по Бартоломе. В промышленности пропилен получают также дегидрированием алканов в присутствии катализатора (Сr2О3, Аl2О3).

Промышленным способом получения пропилена наряду с крекингом служит дегидратация пропанола над оксидом алюминия:

Применение

Пропилен находит свое применение в промышленном синтезе.

Полипропилен. Производство полипропилена в промышленности началось в 1954 году благодаря работам Натты, который использовал для полимеризации пропилена каталитическую систему Циглера. Натта впервые получил стереорегулярный полимер, названный им изотактическим; в нем все метильные группы расположены по одну сторону цепи, что способствует благоприятной "упаковке" полимерных молекул и определяет хорошие механические свойства полипропилена:

Полипропилен находит аналогичное полиэтилену применение — как пластик, для производства волокна и др.

Оксид пропилена. Около 10% нефтехимического пропилена расходуется на производство оксида пропилена. До 1968 года оксид пропилена производился только хлоргидринным методом (промежуточно образовывался пропиленхлоргидрин ):

Этот метод имеет недостатки, связанные с использованием дорогостоящих хлора и гидроксида кальция. Начиная с 1968 года появился альтернативный вариант, так называемый халкон-процесс, основанный на взаимодействии пропилена с гидропероксидами (например., третичным бутилпероксидом ):

Вполне вероятно, что этот метод со временем полностью заменит хлоргидринный процесс. Оксид пропилена используется для синтеза пропиленгликоля, из которого далее получают взаимодействием с многоатомными спиртами (например, глицерином) пенополиуретаны, находящие применение в качестве амортизирующих материалов (коврики, мебель, упаковка), теплоизоляторов в строительстве, фильтрующих и сорбирующих жидкости материалов.

Изопропиловый спирт и ацетон. Важнейшее применение пропилена связано с синтезом изопропилового спирта и ацетона. Как уже упоминалось, изопропиловый спирт, который используется как ценный растворитель, можно считать первым продуктом нефтехимии. Интересно, что большие количества его все еще получают, как в 1920 году, сернокислотным процессом:

Изопропиловый спирт также получают прямой гидратацией пропилена в присутствии кислых катализаторов:

Почти 50% производимого изопропилового спирта расходуется на получение ацетона дегидрированием на медно-цинковом катализаторе или оксиде цинка при 380°С:

Гидроформилирование. Особо хотелось обратить внимание на использование пропилена для синтеза альдегидов с помощью замечательной реакции гидроформилирования, или оксосинтеза, которая была открыта в 1938 году и стала одной из важнейших в нефтехимии.

При взаимодействии пропилена (и других алкенов) с монооксидом углерода и водорода (такая смесь называется синтез-газом) в присутствии карбонилов кобальта Со2(СО)8 при температуре 150— 180°Си давлении 200 —250 атм образуются два альдегида — нормального и изостроения:

С момента открытия эта реакция являлась предметом интенсивных исследований ученых: необходимо было смягчить условия реакции, по возможности уменьшить долю менее ценных разветвленных альдегидов и избежать возможной реакции гидрирования двойной связи. Были разработаны более экономичные процессы, например, с использованием родиевых катализаторов, стабилизированных трифенилфосфином . В последнем случае удалось снизить температуру до 100°С, давление —до 20 атм и повысить выходы альдегидов нормального строения.

Акриловая кислота и акрилонитрил. Теперь перейдем к продуктам, получаемым в результате реакций метильной группы пропилена. В этом ряду основное место без сомнения занимают процессы

получения акриловой кислоты

←предыдущая  следующая→
1 2 



Copyright © 2005—2007 «Mark5»