Энергия-М Котельное оборудование в Москве
Главная » Статьи » Расчет дымовой трубы
Расчет дымовой трубы
Элементарное объяснение явления тяги было дано в гл. IV. Если обозначить разность давлений наружного воздуха и горячих газов у корня трубы через Δр, последнее будет равно разности веса двух столбов газа с разными температурами и одинаковой высотой, т. е.
В этой формуле удельный вес воздуха и газов γв и γг принят при 0° и 760 мм и сделаны пересчеты, учитывая расчетные температуры и принятое барометрическое давление.
Упрощая в дальнейшем уравнение (267) (приравниваем γг = γв=1,3 кг/нм 3 , ошибка получается ничтожной), получают
Когда задвижка открыта и по трубе проходят газы, то на создание выходной скорости, на преодоление сопротивления трения о стенки трубы, а также в связи с охлаждением ствола трубы придется израсходовать часть теоретической тяги, и у основания расчет дымовой трубы будет наблюдаться разрежение меньшее, равное
По табл. 51 можно определить величину теоретической тяги, зная температуру отходящих газов у основания расчет дымовой трубы, а также задаваясь температурой наружного воздуха. Барометрическое давление и влажность воздуха приняты в таблице отвечающими средним условиям b =750 мм рт. ст. и φ = 70%.
Охлаждение газов в трубе, считая на 1 м высоты, может быть подсчитано по следующим эмпирическим формулам:
а) для железных нефутерованных труб
где D – суммарная максимальная паропроизводительность всех котлов, присоединенных к трубе, в т/час.
Определив таким образом ΔТ, можно в формуле (268) заменить Ттр значением (Ттр-ΔТН/2), тогда поправка в формуле (269) на охлаждение трубы исключается.
Обыкновенно в трубах небольшого диаметра скорость по выходе газов из трубы принимается равной 4-6 м/сек, при больших диаметрах (2 м и более) скорость повышается, доходя до 8- 10 м/сек. При дымососах скорость газов по трубе может доходить до 10-15 м/сек, лишь бы обеспечить разрежение в выхлопных газоходах после дымососа во избежание выбивания из них газов.
Площадь выходного сечения трубы подсчитывают, задаваясь скоростями выхода газов:
откуда определяется верхний внутренний диаметр расчет дымовой трубы.
Потеря тяги, связанная с наличием выходной скорости, подсчитывается по формуле
Сопротивление трения определяется по приближенной формуле :
Расчет дымовой трубы, так же как и дымосос, рассчитывают на максимальную нагрузку. В отопительно-производственных котельных максимальная нагрузка совпадает с хорошими условиями тяги (морозные дни). Поэтому, рассчитав трубу по максимальной нагрузке при зимней температуре наружного воздуха, надо произвести поверку для условий летней работы при tв= 20-30°, когда из-за понижений нагрузки будут меньше газовые сопротивления газоходов, но зато и ухудшится тяга.
Для возможности регулирования тяги в дымовой трубе должен создаваться запас тяги; поэтому сумма газовых сопротивлений обычно увеличивается на 20%.
В соответствии с санитарными нормами проектирования промышленных предприятий, утвержденными Советом Министров СССР 6 января 1951 г., высота дымовых труб принимается по табл. 52.
Радиус санитарно-защитных зон в метрах для промышленных котельных с расходом топлива от 3 т/час и более дан в табл. 53.
Дымовые трубы
Дымовые трубы изготавливают кирпичными, железобетонными и стальными. Кирпичные дымовые трубы сооружают обычно высотой до 80 м; более высокие сооружают из железобетона. Стальные дымовые трубы устанавливают только на вертикально-цилиндрических котлах и водогрейных котлах большой теплопроизводительности башенного типа. Так как дымовая труба – дорогостоящее сооружение, то обычно ее устанавливают одну для всей котельной или для группы из двух-трех котельных агрегатов.
Дымовая труба работает одинаково независимо от рода тяги в котельной установке — естественной или искусственной. Разница заключается только в количественной стороне вопроса. Дымовая труба при естественной тяге должна преодолеть сопротивление всей котельной установки, а при искусственной тяге должна отвести дымовые газы в более высокие слои атмосферы, а тяга, которую она создает, становится только добавлением к тяге, создаваемой дымососом.
Действие дымовой трубы основано на принципе самотяги: разность весов столба более горячих дымовых газов в трубе и такой же высоты столба более холодного воздуха в окружающей атмосфере приводит к возникновению движения потока дымовых газов в газоходах котла и соответствующего разрежения в топке. Самотяга дымовой трубы будет тем больше, чем выше температура дымовых газов в трубе, чем ниже температура наружного воздуха и чем выше труба. Однако не вся тяга, создаваемая дымовой трубой, может быть использована для преодоления сопротивления котельной установки. Некоторая часть этой тяги затрачивается на преодоление трения дымовых газов о стенки самой трубы и создание динамического давления, необходимого для получения заданной скорости выхода дымовых газов из трубы.
Высоту дымовой трубы при искусственной тяге выбирают, исходя из санитарных требований отвода газов на необходимую высоту. Из этих же соображений проверяют и минимально допустимую высоту дымовой трубы при естественной тяге. Согласно СНиП II-Г.9-65 высоту дымовых труб котельных, предназначаемых для работы на твердом топливе при наличии установок для очистки дымовых газов от золы со степенью улавливания 85-90 %, выбирают в зависимости от величин приведенной зольности и сернистости топлива по данным табл.1. Согласно данным этой таблицы выбирают также высоту дымовой трубы для котельных, предназначаемых для сжигания мазута. Для котельных, предназначаемых для работы на газообразном топливе, высоту дымовой трубы выбирают по конструктивным соображениям, но не ниже 20 м.
✩✩✩ Кирпичные, железобетонные и стальные дымовые трубы. Промышленные дымовые трубы ➜ расчет дымовой трубы➜ унифицирован ряд типоразмеров.
Источник: ikotel.info
Тяга в дымоходной трубе
Как правильно собрать дымоход, что учесть при его сборке и почему возникает “обратная тяга”? Ответы в нашей статье.
Тяга – это движение дымовых газов вверх по дымовой трубе, из области повышенного давления в область пониженного давления. В дымоходе(в трубе) установленного диаметра, высотой не менее 5м., образуется разрежение, это значит образуется необходимый минимальный перепад давления между нижней частью дымохода и верхней, воздух из нижней части, попадая в трубу, уходит вверх. Это и называют тягой. Тягу можно замерить специальными чувствительными приборами, либо взять пушинку и поднести ее к трубе.
Соответственно, если взять трубу достаточного диаметра, в которой у воздуха есть возможность двигаться, и вытянуть ее высоко вверх, то воздух от земли начнет постоянно вытекать наверх. Это происходит потому что вверху ниже давление, а разрежение больше, и воздух стремится туда естественным образом. А на его место придет воздух с других сторон.
В системе «топка + дымоход» тяга действует даже если печь не работает. При горении дров образуется повышенное давление во внутренней топочной камере и образующиеся при горении дымовые газы требуют выхода. Все топки и печи имеют конструкцию, выводящую дымовые газы в дымоход.
Высота каждого дымохода подобрана так, чтобы создалась тяга, создалось изначальное разрежение. При горении в топочной камере, выделяется тепло, газы и возникает избыточное давление. Газы движутся в дымоходе под воздействием тяги, стремятся идти из области повышенного в область пониженного давления. Работают законы созданные природой.
Что же такое «обратная тяга»?
Обратная тяга – это движение дымовых газов из области повышенного давления в область пониженного, но не вверх (как описано ранее), а вниз. Обратная тяга образуется при инверсии давления – когда давление вверху выше, чем внизу.
Причинами становятся самые обыденные вещи: если помещение герметично, стоят стеклопакеты, а вместе с дымоходом работает вытяжка, вытягивающая воздух из помещения. Тут и создается пониженное давление относительно окружающей местности. Поэтому, при растопке, когда дымоход пока еще холодный, у воздуха в верхней части дымохода большее давление, чем в помещении. Дым конечно пойдет туда, куда ему легче. Это явление называют «холодный столб». При остывании дымохода, внутри образуется столб холодного воздуха, который давит вниз, возникает обратная тяга. Если давление в помещении , не пониженное, то теплый воздух пойдет вверх, в дымоход.
Таким образом, если в помещении нет кухонной вытяжки и оно не герметично, никакого застаивания холодного воздуха в топке не будет.
Проверьте: если зимой перед тем, как затопить камин, сперва поджечь газету и занести ее в трубу (минуя топочную часть), то огонь не пойдет в помещение, какой бы ни был столб холодного воздуха. Огонь будет гореть и выходить только в трубу. Это указывает на то, что давление в помещении не пониженное и теплый воздух нормально стремится вверх.
При растопке печи или камина иногда дым идёт в помещение. Связано это с тем, что образующиеся дымовые газы при первоначальной растопке еще не успели нагреться, и, при подъёме вверх соприкасаясь с холодными стенками, сразу охлаждаются. После этого они, естественно, устремятся вниз. Снова возникает обратная тяга. Чтобы нормализовать тягу в печи, важно растапливать правильно, понимая происходящие там процессы.
Опрокидывание тяги
Еще один возникающий вопрос – это опрокидывание тяги. В каких случаях это происходит?
Если дымоход протяженный и холодный (зачастую кирпичный), а давление сниженное. Если соотношение размеров топки и сечения дымохода соответствуют, если в помещении нормальное давление, все равно возникает ситуация, когда при растопке пламени не хватает силы и отходящие дымовые газы успевают охладиться в дымоходе и обрушиваются вниз. Происходит подобное при пасмурной погоде, ветре. Бывает, что огонь нормально разгорается, но потом дым валит в помещение. Воздух из помещения забирается, и давление снижается, притока воздуха нет. А дымовые газы поднимаясь охлаждаются и обрушиваются вниз. Что надо знать в таких ситуациях? Приоткройте форточку, если помещение имеет стеклопакеты и герметично. Важна подготовка дров, их качество.
Как правильно собрать дымоход?
Сэндвич дымоходы(сборные), собираются по дыму и по конденсату.
Существует мнение, что собирать по дыму правильнее. Объясняют тем, что на стыках труб остаются щели, куда забиваются выходящие в трубу дымовые газы. В противоположность этому, считается, что если собрать по дыму, то дым перестанет выходить.
Решить такой спор можно, если в действующей печи высверлить в любом месте дымохода отверстие и посмотреть, а что же произойдет. Наиболее интересно сделать это в нижней части. Отверстие высверлите любое, хоть сантиметр в диаметре. Что вы увидите? Из этого отверстия никакого дыма выходить не будет (если не закрывать плотно дымоход сверху).
Что же важнее учесть при сборке дымохода?
Главное – учесть то, что в каждом дымоходе возможно возникновение конденсата, особенно когда он еще холодный и теплые дымовые газы, поднимаясь сильно охлаждаются. На стенках может оседать конденсат, который стекает по трубе.
Если дымоход собран по дыму, то конденсат легко проникает в щели и увлажняет изоляцию, полностью лишая её теплоизолирующих свойств. Тут и до пожара недалеко. Поэтому сборка модульных дымоходов ведётся только по конденсату. Дымоходы собираются на четкий стык, с герметиком по внутренней трубе. Однако дымоходы сами по себе должны быть качественными, чтобы не оставалось посторонних щелей. Если щели останутся – через них зайдет воздух, и получается, что все равно тяги не будет.
Но дымоход ведь большой, высокий! Не понимая в чем причина, вызывают мастеров. Мастера используют простой метод: накрывают сверху дымоход и смотрят, откуда пойдет дым. Тут обнаруживаются всевозможные нестыковки в дымоходе, которые и приводят к тому, что подсасывается воздух внутрь дымохода. Помните? Воздух стремится вверх, туда, где давление ниже. Поэтому, чем больше щелей, тем хуже тяга внизу. Сборка по дыму, к сожалению, не учитывает саму суть тяги. В результате огонь горит, а дым прёт во все стороны. Хотя логика тут не сложная – дым идет из области повышенного в область пониженного давления, туда, куда ему легче.
В чем измеряется тяга?
Норма тяги для стандартного камина или печи – в среднем 10 Паскаль (Па). Замеряется тяга за дымовым патрубком, так как именно там видны скорость эвакуации дымовых газов и соответствие соотношению размеров топки печи и диаметра дымохода.
Что еще влияет на величину тяги?
В первую очередь, высота дымохода. Минимально необходимая высота – 5 метров. Этого достаточно для возникновения естественного разрежения и начала движения вверх. Чем выше дымоход, тем сильнее тяга. Однако, в кирпичном дымоходе сечением в среднем 140х140мм., при высоте свыше 10-12 метров, тяга уже не возрастает. Это происходит потому, что значение шероховатости стенок растет с увеличением высоты. Поэтому, избыточная высота не влияет на тягу. Подобный вопрос возникает у желающих использовать под дымоходы каналы в домах. Они бывают большой высоты и узкого сечения, поэтому серьёзный камин редко подсоединяют к такому дымоходу.
Факторы влияющие на тягу:
- Температура отходящих дымовых газов. Чем выше температура, тем скорее устремляются дымовые газы вверх, возникает большая тяга.
- Прогреваемость дымохода. Чем быстрее прогревается дымоход, тем быстрее нормализуется тяга.
- Степень шероховатости дымохода, внутренних стенок. Шероховатые стенки тягу снижают, при гладких стенках тяга лучше.
- Форма сечения дымохода. Круглое сечение – это образец; овальное, прямоугольное и так далее. Чем замысловатее форма, тем это сильнее влияет на тягу, снижая ее.
- Важно отметить,что влияет и соотношение размеров топки, диаметра выходного патрубка и диаметра дымоходной трубы. При избыточной высоте проектируемого дымохода, следует подумать о том, чтобы уменьшить сечение дымохода в среднем на 10%. На топку, на дымовой патрубок, установить переходник (например с 200-го диаметра на 180-й) и саму трубу брать 180-ую. Это допускается производителями. Если для примера говорить о “EdilKamin” , видно, что он расписывает в инструкциях к топкам, какого диаметра брать дымоход в зависимости от высоты.
- высота до 3 м – диаметр 250,
- высота от 3 м до 5 м – 200,
- высота от 5 м и выше – 180 или 160. Строгие рекомендации.
Другие производители (как пример, фирма Supra) допускают, что возможны изменения. Некоторые вовсе не допускают. Поэтому руководствуясь инструкциями, не стоит забывать и о происходящих в дымоходе процессах.
Как измеряется тяга?
Вначале затопите печь или камин. Топить не менее получаса, чтобы нормализовались процессы. Затем, проделав отверстие в трубе чуть выше дымового патрубка, вставьте туда специальный датчик депримометра и измерьте тягу. Проверьте, избыточна она или ее не хватает. Факторов, влияющих на тягу, много, рассмотрим еще несколько.
Роза ветров
Ситуация когда господствующие ветра задувают прямо в дымоход и снижают тягу либо разворачивают её. Дымоход ставят с наветренной стороны, конечно если определены направления ветров. Если дымоход расположен далеко от конька и ниже, нельзя использовать подветренную сторону. Многоэтажные дома и деревья тоже влияют на тягу. Для компенсации порывов ветра и неудачного расположения дымохода используют антиветровые дефлекторы. По нормативам дымоход выводится на полметра выше конька. Если расстояние от конька 1,5 м – 3 м, то выводится в один уровень с коньком. Если расстояние свыше 3-х метров, то дальше действуют по формуле: от горизонтали, проведенной от конька, 10 градусов вниз. На практике дымоход делают выше конька, либо в один уровень с коньком. Важно использовать один дымоход для одной печи.
Как правильно собрать дымоход, что учесть при его сборке и почему возникает “обратная тяга”? Ответы в нашей статье.
Источник: www.pech.ru
Расчет высоты трубы при принудительной тяге
Расчет высоты трубы при принудительной тяге
Расчет высоты трубы при принудительной тяге определяют исходя из условий обеспечения допустимых концентраций вредных веществ в атмосфере. Скорость дымовых газов в трубах с принудительной тягой обычно высока – 30-40 м/с. В этих условиях столб дымовых газов поднимается зачастую значительно выше самой трубы. Следовательно, на высоту выбрасываемого столба газов существенное влияние начинает оказывать общее состояние атмосферы.
Важнейшим фактором, определяющим рассеивание в атмосфере дымовых газов, содержащих вредные примеси, является атмосферная турбулентность. Эта характеристика атмосферы – результат двух процессов: нагревания атмосферы и поверхности земли, в связи с чем образуются естественные конвективные потоки, и механической турбулентности вследствие взаимодействия ветрового потока с подстилающей поверхностью.
Нагревающийся у поверхности земли воздух в результате уменьшения плотности поднимается вверх, а более холодный и плотный воздух опускается к поверхности земли. Но бывают случаи, когда температура воздуха с высотой возрастает (инверсия температуры), дымовых газов на определенной высоте оказывается холоднее окружающих масс и его движение затухает.
Если условия инверсии дополняются малыми скоростями ветра, то приземные концентрации вредных веществ увеличиваются как за счет ограничения их активного перемешивания по вертикали, так и за счет уменьшения в этих условиях эффективной высоты подъема факела. Таким образом, можно считать, что в расчет высоты трубы при принудительной тяге наиболее неблагоприятно включать сочетание приподнятой мощной инверсии, начинающейся на высоте выброса, и малой скорости ветра в приземном слое атмосферы, а для невысокой трубы – сочетание приземной инверсии и приземного штиля.
Концентрации вредных примесей определяют, решая уравнение турбулентной диффузии применительно к тому или иному состоянию атмосферы. При постоянной скорости ветра (и – const) и изотропной (одинаковой по всем направлениям) турбулентности выражение для определения максимальной концентрации См выглядит так:
где М – массовый выброс вредной примеси; Нэф – эффективная высота источника выброса.
Однако в реальной атмосфере характер изменения турбулентной диффузии и скорости ветра значительно сложнее, поэтому для практических расчетов рассеивания в атмосфере вредных примесей, содержащихся в выбросах предприятий, используют методику, основанную на неблагоприятных метеорологических условиях, когда скорость ветра достигает опасного значения и имеет место интенсивный вертикальный турбулентный обмен в атмосфере.Опасная скорость ветра – это такая скорость, при которой для заданного состояния атмосферы концентрация вредных примесей на уровне дыхания людей достигает максимальной величины.
Действительно, из формулы (2.15) следует, что с повышением скорости ветра и максимальная наземная концентрация вредных выбросов от точечного источники, расположенного на высоте над землей, падает. С другой стороны, с увеличением скорости ветра уменьшается вследствие снижения гидродинамической и тепловой составляющих подъема факела. Опасная скорость ветра на уровне флюгера (обычно 10 м от уровня земли) определяется по следующим соотношениям:
здесь V1 – расход выбрасываемых трубой газов. м 3 /с: ΔТ – разность температуры выбрасываемых газов и средней температуры воздуха самого жаркого месяца года в полдень.ºС; Н – геометрическая высота дымовой трубы, м; W, скорость выхода гадов из трубы, м/с; D – выходной диаметр дымовой трубы, м.
При вышеназванных условиях максимальную приземную концентрацию вредных веществ для выброса из одиночного точечного источника с круглым выходным диаметром (дымовой трубы) определяют по формуле
где А – коэффициент, зависящий от температурной стратификации (слоистость на розных высотах) атмосферы для неблагоприятных метеорологических углоаий, определяющий условия вертикального и горизонтального рассеивания вредных веществ в атмосферном воздухе, для европейской части центра России А = 120; для Севера и Северо-Запада европейской части России, Среднего Поволжья и Урала А = 160; для Нижнего Поволжья, Кавказа. Сибири и Дальнего Востока А = 200; М – суммарное количество вредных веществ, выбрасываемое в атмосферу, г/с; F безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе, F=1 – для газообразных примесей; F=2 – для пыли при степени улавливания 90%; F=2,5 – для пыли при степени улавливания менее 90%; m и n – безразмерные коэффициенты. учитывающие условия выхода газовоздушной смеси из выходного отверстия дымовой трубы.
Коэффициент m определяют в зависимости от параметра f по формуле
Коэффициент n определяют в зависимости от параметра Vm;
Высоту дымовой трубы определяют по формуле:
где ПДК – предельно допустимая концентрация вредных веществ для данного рай она, причем для городов, зон отдыха, курортов и т.и. ПДК принимают с коэффициентом 0.8. При расположении в непосредственной близости нескольких дымовых труб одинаковой высоты, что довольно часто встречается на ТЭС, высоту труб определяют но формуле
где М – суммарное количество вредных выбросов, г/с; V – суммарный объем газовоздуишой смеси. м 2 /с; N – количество дымовых труб.
Минздравом России введено требование об учете суммарного действия сернистого ангидрида и оксидов азота. В этом случае расчет высоты трубы при принудительной тяге выглядит следующим образом:
При возведении дымовой трубы вблизи действующих промышленных предприятий следует учитывать уже имеющуюся фоновую загазованность атмосферы. Тогда формула для расчета высоты дымовой трубы примет вид:
где с – фоновая концентрация вредных примесей в атмосфере, мг/м 2 .
Необходимо подчеркнуть, что расчет высоты трубы при принудительной тяге по методике расчета рассеивания вредных примесей должна выбираться после того, как будут определены и учтены все возможности по уменьшению количества выбросов вредных веществ в атмосферу.
Расчет высоты трубы при принудительной тяге
Источник: topky.ru
Дымовая труба, расчет
При устройстве печи в идеале хочется иметь такую конструкцию, которая автоматически давала бы столько воздуха, сколько надо для горения. С первого взгляда, это можно сделать с помощью дымовой трубы. Действительно, чем более интенсивно горят дрова, тем больше должно быть горячих дымовых газов, тем больше должна быть и тяга (модель карбюратора). Но это не так. Тяга вовсе не зависит от количества образующихся горячих дымовых газов. Тяга — это перепад давления в трубе от оголовка трубы до топливника. Определяется же она высотой трубы и температурой дымовых газов, а точнее — их плотностью.
Тягу определяют по формуле:
где F — тяга, А — коэффициент, pв — плотность наружного воздуха, pд — плотность дымовых газов, h — высота трубы
Плотность дымовых газов рассчитывают по формуле:
где t в и t д — температура в градусах Цельсия наружного атмосферного воздуха вне трубы и дымовых газов в трубе.
Скорость движения дымовых газов в трубе (объёмный расход, то есть засасывающая способность трубы) G вовсе не зависит от высоты трубы и определяется разностью температур дымовых газов и наружного воздуха, а также площадью поперечного сечения дымовой трубы. Отсюда следует ряд практических выводов.
Во-первых, дымовые трубы делают высокими вовсе не для того, чтобы повысить расход воздуха через топливник, а только для увеличения тяги (то есть перепада давления в трубе). Это очень важно для предотвращения опрокидывания тяги (дымления печи) при ветровом подпоре (величина тяги должна всегда превышать возможный ветровой подпор).
Во-вторых, регулировать расход воздуха удобно с помощью устройств, изменяющих площадь живого сечения трубы, то есть с помощью задвижек. При увеличении площади поперечного сечения канала дымовой трубы, например, вдвое — можно ожидать примерно двукратного увеличения объёмного расхода воздуха через топливник.
Поясним это простым и наглядным примером. Имеем две одинаковые печи. Объединяем их в одну. Получаем вдвое большую печь с удвоенным количеством горящих дров, с двукратными расходом воздуха и площадью поперечного сечения трубы. Или (что является тем же самым), если в топливнике разгорается всё больше дров, то необходимо всё больше и больше открывать задвижки на трубе.
В-третьих, если печка горит нормально в установившемся режиме, а мы добавочно пустим в топливник поток холодного воздуха мимо горящих дров в трубу, то дымовые газы тотчас охладятся, и расход воздуха через печь сократится. При этом горящие дрова начнут затухать. То есть мы вроде бы непосредственно на дрова не влияем и направляем дополнительный поток мимо дров, а получается так, что труба может пропустить меньше дымовых газов, чем раньше, когда этот дополнительный поток воздуха отсутствовал. Труба сама сократит поток воздуха на дрова, что был ранее, и к тому же не пустит добавочный поток холодного воздуха. Иными словами, дымовая труба запрётся.
Вот почему так вредны подсосы холодного воздуха через щели в дымовых трубах, излишние потоки воздуха в топливнике да и вообще какие-либо теплопотери в дымовой трубе, приводящие к снижению температуры дымовых газов.
В-четвёртых, чем больше коэффициент газодинамического сопротивления дымовой трубы, тем меньше расход воздуха. То есть стенки дымовой трубы желательно выполнять как можно более гладкими, без завихрений и без поворотов.
В-пятых, чем меньше температура дымовых газов, тем более резко изменяется расход воздуха при колебаниях температуры дымовых газов, что и объясняет ситуацию неустойчивости работы трубы при розжиге печи.
В-шестых, при высоких температурах дымовых газов расход воздуха не зависит от температуры дымовых газов. То есть при сильном разгорании печи расход воздуха перестаёт увеличиваться и начинает зависеть только от сечения трубы.
Вопросы неустойчивости возникают не только при анализе тепловых характеристик трубы, но и при рассмотрении динамики газовых потоков в трубе. Действительно, дымовая труба представляет собой колодец, заполненный лёгким дымовым газом. Если этот лёгкий дымовой газ поднимается вверх не очень быстро, то не исключена вероятность того, что тяжёлый внешний воздух может попросту утонуть в лёгком газе и создать падающий нисходящий поток в трубе. Особенно вероятна такая ситуация при холодных стенках дымовой трубы, то есть во время розжига печи.
Рис. 1. Схема движения газов в холодной дымовой трубе: 1 — топливник- 2 — подача воздуха через поддувало- 3—дымовая труба- 4 — задвижка- 5 — каминный зуб- 6—дымовые газы- 7—проваливающийся холодный воздух- 8 — поток воздуха, вызывающий опрокидывание тяги.
а) гладкая открытая вертикальная труба
б) труба с задвижкой и зубом
в) труба с верхней задвижкой
Сплошные стрелки — направления движения лёгких горячих дымовых газов. Пунктирные стрелки — направления движения нисходящих потоков холодного тяжёлого воздуха из атмосферы.
На рис. 1а схематически изображена печь, в которую подаётся воздух 2 и выводятся через дымовую трубу дымовые газы 6. Если поперечное сечение трубы велико (или скорость движения дымовых газов мала), то в результате какой-либо флуктуации в трубу начинает проникать холодный тяжёлый атмосферный воздух 7, достигая даже топливника. Этот падающий поток может заменить «штатный» поток воздуха через поддувало 2. Даже если печь будет заперта на все дверцы и все заслонки воздухозаборных отверстий будут закрыты, то всё равно печь может гореть за счёт поступающего сверху воздуха. Кстати, именно так часто и бывает при догорании углей при закрытых дверях печей. Может даже произойти полное опрокидывание тяги: воздух будет поступать сверху через трубу, а дымовые газы — выходить через дверцу.
В действительности же на внутренней стенке дымовой трубы всегда имеются неровности, наросты, шероховатости, при соударении с которыми дымовые газы и встречные нисходящие холодные воздушные потоки взвихриваются и перемешиваются друг с другом. Холодный нисходящий поток воздуха при этом выталкивается или, нагреваясь, начинает подниматься вверх вперемешку с горячими газами.
Эффект разворачивания нисходящих потоков холодного воздуха вверх усиливается при наличии частично открытых задвижек, а также так называемого зуба, широко применяемого в технологии изготовления каминов (рис. 1б). Зуб препятствует поступлению холодного воздуха из трубы в каминное пространство и предотвращает тем самым дымление камина.
Нисходящие потоки воздуха в трубе особенно опасны в туманную погоду: дымовые газы не в состоянии испарить мельчайшие капельки воды, охлаждаются, тяга снижается и может даже опрокинуться. Печь при этом сильно дымит, не разгорается.
По той же причине сильно дымят печи с сырыми дымовыми трубами. Для предотвращения возникновения нисходящих потоков особенно эффективны верхние задвижки (рис. 1в), регулируемые в зависимости от скорости дымовых газов в дымовой трубе. Однако эксплуатация таких задвижек неудобна.
Рис. 2. Зависимость коэффициента избытка воздуха а от времени протопки печи (сплошная кривая). Пунктирная кривая — потребный расход воздуха Gпотр для полного окисления продуктов сгорания дров (в том числе сажи и летучих веществ) в дымовых газах (в относительных единицах). Штрих-пунктирная кривая — реальный расход воздуха Gтрубы обеспечиваемый тягой трубы (в относительных единицах). Коэффициент избытка воздуха является частным отделения Gтрубы на Gпотр
Устойчивая и достаточно сильная тяга возникает только после прогрева стенок дымовой трубы, на что требуется значительное время, Так что в начале протопки воздуха всегда не хватает. Коэффициент избытка воздуха при этом меньше единицы, и печь дымит (рис. 2). И наоборот: по окончании протопки дымовая труба остаётся горячей, тяга долго сохраняется, хотя дрова уже практически сгорели (коэффициент избытка воздуха — больше единицы). Металлические печи с металлическими утеплёнными дымовыми трубами быстрее выходят на режим ввиду малой теплоёмкости по сравнению с кирпичными трубами.
Анализ процессов в дымовой трубе можно продолжить, но уже и так ясно, что как бы ни хороша была сама печь, все её достоинства могут быть сведены к нулю плохой дымовой трубой. Конечно, в идеальном варианте дымовую трубу надо было бы заменить современной системой принудительной вытяжки дымовых газов с помощью электрического вентилятора с регулируемым расходом и с предварительной конденсацией влаги из дымовых газов. Такая система помимо прочего могла бы очищать дымовые газы от сажи, окиси углерода и других вредных примесей, а также охлаждать сбрасываемые дымовые газы и обеспечивать рекуперацию тепла.
Но всё это — в далёкой перспективе. Для дачника и садовода дымовая труба порой и так может стать намного дороже самой печи, особенно в случае отопления многоуровневого дома. Банные дымовые трубы обычно попроще и покороче, но уровень тепловой мощности печи может быть очень большим. Такие трубы, как правило, сильно прогреты по всей длине, из них часто вылетают искры и пепел, но выпадение конденсата и сажи незначительно.
Если вы пока планируете использовать банное здание только как баню, то трубу можно делать и неутеплённой. Если же баня задумывается вами и как место возможного пребывания (временного проживания, ночёвок), особенно зимой, то целесообразнее трубу сразу делать утеплённой, причём качественно, «на всю жизнь». Печки при этом можно менять хоть каждый день, подбирать конструкцию поудачней и по-нужнее, а труба будет одна и та же.
По тем же соображениям не стоит увлекаться высотой трубы — уровень тяги не так уж важен для безоборотной банной печи. Если же она будет поддымливать, всегда можно быстро проветрить помещение. А вот высоту над коньком крыши (не менее 0,5 м) следует соблюсти обязательно для предотвращения опрокидывания тяги при порывах ветра. На пологих же крышах труба должна выступать над снежным покровом. Во всяком случае лучше иметь трубу пониже, но потеплее (чем повыше, но холоднее). Высокие трубы зимой всегда холодные и опасные в эксплуатации.
Холодные дымовые трубы имеют массу недостатков. В то же время неутеплённые, но не очень длинные трубы на металлических печах при растопке прогреваются быстро (много быстрее, чем кирпичные трубы), остаются горячими при энергичной протопке и поэтому в банях (и не только в банях) применяются очень широко, тем более что они относительно дёшевы. Асбоцементные трубы на металлических печах не используют, так как они имеют большой вес, а также разрушаются при перегреве с разлётом осколков.
Рис. 3. Простейшие конструкции металлических дымовых труб: 1 — металлическая круглая дымовая труба- 2 — искроуловитель- 3 — колпак для защиты трубы от атмосферных осадков- 4 — стропила- 5 — обрешётка крыши- 6 —деревянные бруски между стропилами (или балками) для оформления противопожарного проёма (разделки) в крыше или перекрытии (при необходимости)- 7 — конёк крыши- 8 — мягкая кровля (рубероид, гидростеклоизол, мягкая черепица, гофрированные картонно-битумные листы и т.п.)- 9 — металлический лист для настила крыши и перекрытия проёма (допускается использовать плоский лист ацеида — асбоцементную электроизоляционную доску)- 10 — металлическая водоотводная накладка- 11 — асбестовая герметизация зазора (стыка)- 12 — металлический колпак-выдра- 13 — потолочные балки (с заполнением пространства утеплителем)- 14 — обшивка потолка- 15 — пол чердака (при необходимости)- 16 — металлический лист потолочной разделки- 17 — металлические усиливающие уголки- 18 — металлическая крышка потолочной разделки (при необходимости)- 19 — утеплитель негорючий термостойкий (керамзит, песок, перлит, минвата)- 20 — защитная накладка (металлический лист по слою асбестового картона толщиной 8 мм)- 21 — металлический экран трубы.
а) нетеплоизолированная труба-
б) теплоизолированная экранированная труба с сопротивлением теплопередаче не менее 0,3 м 2 -град/Вт (что эквивалентно толщине кирпича 130 мм или толщине утеплителя типа минваты 20 мм).
На рис. 3 представлены типичные монтажные схемы неутеплённых металлических труб. Саму трубу следует приобретать из нержавеющей стали толщиной не менее 0,7 мм. Наиболее ходовой диаметр российской трубы — 120 мм, финской — 115 мм.
По ГОСТ 9817-95 площадь поперечного сечения многооборотной дымовой трубы должна составлять не менее 8 см 2 на 1 кВт номинальной тепловой мощности, выделяющейся в топке при горении дров. Эту мощность не следует путать с тепловой мощностью теплоёмкой печи, выделяющейся с наружной кирпичной поверхности печи в помещение по СНиП 2.04.05-91. Это — одно из многочисленных недоразумений наших нормативных документов. Поскольку теплоёмкие печи обычно топятся лишь 2-3 часа в сутки, то мощность в топке примерно в десять раз больше мощности выделения тепла с поверхности кирпичной печи.
В следующий раз мы поговорим об особенностях монтажа дымовых труб.
Станьте первым!